ICARE: A joint initiative for transferring Non Intrusive Coupling Techniques towards Industry

S. Guinard¹, M. Abbas²

¹ Airbus Group Innovations, BP 90112, 31703 Blagnac Cedex, France, stephane.guinard@airbus.com ² EDF Lab Paris Saclay, 1 avenue de la Vauve, 91220 Palaiseau, France, mickael.abbas@edf.fr

Key words: Non Intrusive Coupling, Multi-Scale Analysis, Large and Complex Structures.

ABSTRACT

Before meeting its full potential in industry, computational mechanics will have to overcome two major limitations that still prevent from further release of promising capabilities:

- deriving models from CAD is too long, particularly for complex engineering systems such as aircrafts or power plants; though 'non-value-added' activities are largely outsourced by large companies, induced time cycles and costs for updates of Finite Elements (FE) models are prohibitive items when promoting more simulation into industrial processes;
- linking models at various scales, in various disciplines, is still far from grasp; most multiscale analysis are limited to one-way descendant schemes with no feedback on how local non-linearities may influence the global behaviour; multi-physics couplings are partially captured through few iterations of sequenced mono-disciplinary computations.

Figure 1: Characteritic lenghths to be investigated in multi-scale analysis of aero-structures.

The concept of non-intrusive coupling emerged from [1] and sparked a joint initiative, ICARE, with EDF and AIRBUS as industrial partners - sharing actual numerical issues extracted from real life practices -, and aknowledged partners in complementary disciplines (DISTENE, LMT-Cachan, UTO, GeM) - adapting the initial idea to a set of critical situations met in industrial use-cases. ICARE (Generalized interfaces and non-intrusive coupling between R&D and standard software for computational mechanics) is an ANR granted project (ANR-12-MONU-0002,

 $2013 \rightarrow 2016$) that aims at developing numerical techniques in order to simulate the behavior of large and complex structures: thanks to these techniques, stress engineers will be able of investigating tiny structural details at local scale while keeping their preferred generalist tools at global scale (non-intrusive requirement). A major benefit of ICARE will be to facilitate the dissemination of R&D tools: by making coupling easy, operating specialized R&D software within an industrial framework will be made possible.

Most of herein evoked numerical methods will be discussed further in accompanying papers of mini-symposium "coupling methods for the local enrichment...". The present paper focuses on:

- industrial challenges underscored by ICARE, in different situations where aforementioned issues are critical bottlenecks;
- implementation strategy settled by the consortium, involving EDF support in transferring methods into Code_Aster [5], an open source FE software qualified by the French nuclear authority for industrial studies, meeting all standard requirements for software development and maintenance;
- **capabilities demonstrated today**, with illustrations on recent achievements in different domains: multi-scale analysis with no operation on global mesh, with domain decomposition capabilities [2], with coupling of specialized R&D software dedicated to composites [3], dedicated to crack analysis [4];
- **prospects for continued efforts in disseminating** ICARE's outcomes beyond the scope covered today (structural mechanics).

REFERENCES

- Gendre L., Allix O., Gosselet P. and Comte F. Non-intrusive and exact global/local techniques for structural problems with local plasticity. *Computational Mechanics*. 44(2):233-245 (2009).
- [2] Duval M., Passieux J.-C., Salaün M. and Guinard S. Non-intrusive coupling: recent advances and scalable non-linear domain decomposition. *Arch. of Comp. Mech. in Eng.* In Press 2014 DOI: 10.1007/s11831-014-9132-x.
- [3] Guguin G., Allix O., Gosselet P. and Guinard S. Non-intrusive coupling between 3D and 2D laminated composite models based on finite element 3D recovery. *International Journal for Numerical Methods in Engineering* 98(5):324-343 (2014).
- [4] Passieux J.-C., Réthoré J., Gravouil A. and Baietto M.-C. Local/global non-intrusive crack propagation simulation using a multigrid X-FEM solver. *Computational Mechanics*. 52(6):1381-1393 (2013).
- [5] www.code-aster.org, finite element code for studies and research