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ABSTRACT

From analytical and semi-analytical solutions for elastoplastic problems, see [1], it is known that
the displacement field as well as the stress field, may feature weak discontinuities. These dis-
continuities occur in the transition zone between elastic and elastoplastic behaviour, as shown in
[2]. Under certain conditions, e.g. perfectly plastic material and specific loading, even strongly
discontinuous behaviour appears, see [3]. It is important to emphasize that the location of the
elastic-plastic interface is not known beforehand but it is part of the solution. The fact that the
elastoplastic interface is within the elements drastically reduces the convergence rates, as shown
in the figure below. This has also implications for the application of adaptive schemes.
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Figure 1: Error in deformation energy for an elastoplastic system

The common approach to adaptively improve convergence properties, is to change element size
(h-refinement), to increase the polynomial degree of the ansatz functions (p-refinement), or to
reallocate the nodes (r-refinement), see also [4]. Each of these methods differs in terms of
computational costs and accuracy. Our emphasis is on convergence rates and in this case the
p-refinement seems to be the optimal choice. However, this is true for smooth displacement
fields only. As aforementioned, for elastoplasticity, a kink in the displacement field occurs, and
for such cases additional considerations have to be made.
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We propose two different approaches for this problem, one procedure uses the extended finite
element method (XFEM), the second approach is a tailored version of r-refinement for weak
discontinuities.

The first method relies on the properties of the extended finite element method to include known
solution properties into the approximation space. Our suggestion is to enrich the approximation
space in the presence of weak discontinuities at the plastic interface with modified abs functions,
see [5]. As commonly executed within the framework of the XFEM, the plastic interface is
tracked using the level set method, e.g. in [6]. It is stressed that no remeshing whatsoever is
necessary. Another approach, also within the XFEM-framework, is to use Heaviside enrichment
and enforce continuity using Lagrange multipliers. The numerical examples confirm that with
minimal effort, the absolute error is significantly reduced.

The second method changes the position of the nodes in a tailored iterative procedure and also
adds additional elements if required. Within this scheme, the zero of the level set function is
used to represent the elastoplastic interface. If an element is crossed by the zero level set, an
Newton-Raphson scheme is utilized to either subdivide the element and align the element edges
along the interface or to move the nodes in a way that the interface is represented in an optimal
way. The emphasis in this approach is on the reconstruction of the higher order level-set and
on the integration of the weak form. The blending function method, see [7], is used to map
elements with a higher order side such that the higher order face align with the elastoplastic
interface.
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