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ABSTRACT

The numerical approximation of partial differential equations (PDEs) posed on complicated do-
mains which contain ‘small’ geometrical features, or so-called micro-structures, is of vital im-
portance in engineering applications. In such situations, an extremely large number of elements
may be required for a given mesh generator to produce even a ‘coarse’ mesh which adequately
describes the underlying geometry. With this in mind, the solution of the resulting system of
equations emanating, for example, from a finite element discretization of the underlying PDE
of engineering interest on the resulting ‘coarse’ mesh, may be impractical due to the large num-
ber of degrees of freedom involved. Moreover, since this initial ‘coarse’ mesh already contains
such a large number of elements, the use of efficient multi-level solvers, such as multigrid, or
domain decomposition, using, for example, Schwarz-type preconditioners, may be difficult, as
an adequate sequence of ‘coarser’ grids which represent the geometry are unavailable.

In recent years, a new class of finite elements, referred to as Composite Finite Elements (CFEs),
have been developed for the numerical solution of partial differential equations, which are
particularly suited to problems characterized by small details in the computational domain or
micro-structures; see, for example, [6, 5], for details. This class of methods are closely related to
the Shortley-Weller discretizations developed in the context of finite difference approximations,
cf. [7]. The key idea of CFEs is to exploit general shaped element domains upon which ele-
mental basis functions may only be locally piecewise smooth. In particular, an element domain
within a CFE may consist of a collection of neighbouring elements present within a standard
finite element method, with the basis function of the CFE being constructed as a linear combi-
nation of those defined on the standard finite element subdomains. In this way, CFEs offer an
ideal mathematical and practical framework within which finite element solutions on (coarse)
aggregated meshes may be defined.

In this talk, we consider the generalisation of CFE schemes to the case when hp–version dis-
continuous Galerkin composite finite element methods (DGCFEMs) are employed, cf. [1, 2].
In particular, we propose a new interior penalty (IP) scheme characterized by a careful choice
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of the discontinuity-penalization parameter, which permits the use of polygonal/polyhedral el-
ements such that

• mesh element faces may have arbitrarily small measure in two dimensions;

• both mesh element faces and edges may have arbitrarily small measure in three dimen-
sions.

The approach is based on exploiting a new inverse inequalities relevant to elements with el-
emental interfaces whose measure is potentially much smaller than the measure of the corre-
sponding element, cf. [3, 4]. On the basis of these inverse inequalities, together with appropriate
approximation results on general polygons/polyhedra, we derive a priori error bounds for the
proposed IP DGCFEM for general classes of second–order partial differential equations with
nonnegative characteristic form. Furthermore, the application of this class of methods within
general agglomeration–based refinement algorithms will be considered, based on employing
dual–weighted–residual a posteriori error estimation techniques.
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