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ABSTRACT

Introduction. A steady water flow problem in an 2D aquifer-well system is solved using
several partition of unity (PU) methods. Standard FEM approximation is unable to approximate
singular beaviour of pressure in the vicinity of wells, unless the elements of a mesh are smaller
than the wells. In order to improve the approximation, the standard finite element space is
enriched with an analytical solution to a Laplace problem with a point source on the whole
R2 space. The enrichment is incorporated into the solution via PU methods. Convergence in
terms of L2 norm of the error against analytical solution is measured and the optimal order
of convergence rate is demonstrated for some of the PU methods. Next, the error of adaptive
integration is analysed and a new adaptive strategy is proposed. The influence of the choice of
the enriched domain is investigated and its impact on the error is demonstrated numerically.

PU methods comparison. We are comparing four different PU methods: standard XFEM
(extended finite element method), XFEM with a ramp function (according to R. Gracie and J. R.
Craig [5, 2]), XFEM with both a ramp function and a shifting (denoted as corrected XFEM by
T. P. Fries in [3, 4]), SGFEM (stable generalized FEM) developed by Babuška and Banerjee [1].

In case of XFEM, a ramp function can be used to blend enriched and unenriched part of the
solution on the interface of a local enrichment area (blending elements). We show the higher
error on the blending elements in case of standard XFEM and ill-conditioning of the system
matrix when using the ramp function. The corrected XFEM does not suffer from either of those
in our model.

The SGFEM uses the difference between the enrichment function and its finite element inter-
polation in the enrichment term. We achieve the same error and optimal convergence rate 2.0
with SGFEM as with the corrected XFEM. The advantage of SGFEM is avoiding the special
treatment of blending elements with ramp function and thus a lower count of enriched degrees
of freedom in comparison to corrected XFEM. See the convergence graph of PU methods in
comparison to standard FEM with bilinear finite elements in figure 1a.

Adaptive integration. The adaptive integration of non-polynomial shape functions presented
in [5, 2] was found insufficient, especially when an element edge approached a well. We have
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(a) Convergence graph displaying dependence of the error
in L2 norm on the element size. Standard FEM is compared
with several types of PU methods.
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(b) Dependence of the error in L2 norm on the en-
richment radius for different element sizes.

made an asymptotic analysis of the integration error and suggest new rules. Only then, we
managed to obtain optimal convergence rates (figure 1a) independently of the well position.

The choice of enrichment area (set of enriched elements) is not trivial, as we do not want to
enrich elements redundantly. In case of the singularity, the area is radial and can be defined
by a single parameter – enrichment radius. Assuming that the solution can be split into the
singular (enriched solution part) and the regular part (standard FEM solution part) u = us + ur

and using standard error estimate for elliptic PDE, we estimate the enrichment radius, such that
the error of us on the unenriched area is not higher than the error of regular part ur. According
to our estimate, the optimal enrichment radius is 0.36 in our model which roughly matches
a breakpoint in the plots in figure 1b.

Conclusion. We compared several PU methods on a 2D steady flow model containing a point
singularity. We suggested a new adaptive integration rules which yield in optimal convergence
rate. We estimated optimal enrichment area for our model and validated it with numerical
experiment. In future, we would like to use our experience to apply PU methods in mixed
hybrid formulation to better approximate flow in fractured porous media.
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