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ABSTRACT

We are going to present a high-order discretization for two-phase flow problems, based on an
extended discontinuous Galerkin (DG) discretization. This method combines a classical DG
method with an interface treatment similar to the extended Finite Element methods (XFEM).
The support of the basis functions is conformal with the fluidinterface between the two phases.
Therefore the ‘hp-convergence’ property of the DG method can be achieved evenfor low-
regularity, discontinuous solutions which appear in two-phase flows, as shown in figure 1; con-
vergence plots are shown in figure 2.

The intersection of the fluid interface with a fixed grid may produce very small cut cells, which
have a disastrous effect on the condition number of the (linearized) saddle point problem that
arises from the discretization. These issues can be overcome using a cell agglomeration tech-
nique.

Surface tension causes a jump in the pressure field (see figure1) at the interface which is propor-
tional to the curvature of the interface. In our framework, this interface is given by a level-set.
The curvature can then be computed from first- and second-order derivatives of this level-set
functionϕ. During the time-evolution ofϕ it is usually not possible to conserve continuity ofϕ

and its derivatives, even if the initial data isC∞, which is a source of instability.

We present a stabilized curvature evaluation process, see [1]. The algorithm is based on a patch-
recovery process, to regain approximate continuity of higher derivatives ofϕ. Combined with
a stabilized level set movement,the stability issues can beovercome. We carried out extensive
benchmarking to provide a balance between accuracy and computational cost.

The nonlinear saddle point problem resulting from the discretization can be solved using differ-
ent techniques, including e.g. rather classical approaches like the SIMPLE algorithm (see [2]),
or Krylov-acceleration techniques originally proposed by[3].

Acknowledgement: The work of Thomas Utz and Florian Kummer is supported by the ’Ex-
cellence Initiative’ of the German Federal and State Governments and the Graduate School of
Computational Engineering at Technische Universität Darmstadt. The work of Thomas Utz is
furthermore supported by the German Science Foundation (DFG) within the Priority Program
(SPP) 1506 ”Transport Processes at Fluidic Interfaces”.



Thomas Utz and Florian Kummer

~u
0.53

0.26

0

−0.26

−0.53

−1.5

0

1.5
−1.5

0

1.5
0.4

0

−0.4

p
0.0012

−0.022

−0.045

−0.067

−0.09

−1.5

0

1.5
−1.5

0

1.5
0

−0.1

Figure 1: Velocity inx-direction (left side), pressure (right side) and velocityvectors/interface position/grid (bot-
tom) for the steady ellipsoidal droplet.
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Figure 2: Convergence study on velocity (left side, polynomial degreek) and pressure error (right side, polynomial
degreek′ = k−1). Horizontal axis: logarithm of grid resolution, i.e.log

10
(h), whereh denotes the grid resolution.

Vertical axis: logarithm of error in theL2-norm, i.e.log
10
(‖~u− ~uex‖2) resp.log

10
(‖p− pex‖2).
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