Extensions of the Unfitted Discontinuous Galerkin method for coupled bulk-surface PDEs

Christian Engwer¹, **Sebastian Westerheide**²

 ^{1,2} Institute for Computational and Applied Mathematics Westfälische Wilhelms-Universität Münster, Germany
¹ christian.engwer@uni-muenster.de
² sebastian.westerheide@uni-muenster.de

Key words: Unfitted Discontinuous Galerkin Method, Cut Cell Methods, Bulk-Surface Coupling, Geometric Partial Differential Equations, Level Set Methods, Sharp Interface Method

ABSTRACT

Modern imaging techniques yield high quality information of complex shaped microscopic structures. The unfitted discontinuous Galerkin method (UDG) offers an approach to solve PDEs on implicitly described sub-domains, e.g. obtained using micro-CT imaging, without the need to construct a geometry-resolving mesh. The domain description uses a level-set based formulation; still sub-domain boundaries are incorporated explicitly.

We discuss extensions of the UDG method to surface PDEs and their coupling to bulk equations. A narrow-band approach allows to improve efficiency and local mass conservation. To obtain a UDG constructs basis functions from a simple background mesh and restrict the support according to the actual sub-domain boundaries, i.e. the implicitly prescribed domain. Using the explicit reconstruction of the implicit sub-domain boundary it is possible to couple level-set based surface problems on the interface with sub-domain problems.

Prossible applications cover a wide range of applied problems, especially from medicine and biology. Recent efforts were made to incorporate the UDG method into a general multi-physics extension to the DUNE PDELab library.