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ABSTRACT

In the present work, an adaptive Iso-Geometric analysis [1] is presented for solving plane prob-
lems. The rate of convergence of the solution are studied by considering h− and rh− refine-
ments. The choice of control mesh is arbitrary resulting in highest estimated error. One of the
classical way to reduce the error is by studying the adaptive refinement strategy. The effect of
such method relies on how accurately we measure the error in numerical solution. The classical
approach is to estimate the point-wise interpolation error in Sobolev space: e = u−uh. There
exist even other methods for error estimation, see [2, 3].

Point-wise interpolation error estimation is not direct in Iso-Geometric analysis as the solutions
are not interpolatory functions. In the proposed method, we considered hierarchical B-spline
function as sufficiently smooth function to be in Sobolev space. In this regard, the interpolation
error estimated are acceptable as the continuity properties are retained.

Let ũh ∈ Sh = {ũh ∈ Hp(Ω) | ũh = ug in Γu} and ũ ∈ Sh = {ũ ∈ Hn>p(Ω) | ũ =
ug in Γu} be the B-spline basis of function of different order

||e||m = ||ũh − ũ||m (1)

The physical mesh obtained in IGA are only end interpolatory to control mesh. In such cases
we define control variables where degrees of freedom, boundary conditions and geometry of
physical domain are prescribed, unlike nodal variables in FEM. Such description pose issues
in imposing strong Dirichlet boundary conditions, see [4, 5]. In the proposed method, the
control mesh is obtained by doing recursive sub-division of reference mesh. There by making
the physical mesh to exactly interpolate the control mesh. This allows the exact imposition
of essential boundary conditions in the classical Iso-Geometric analysis, see Fig. 1. Spring
analogy method is used for performing r− refinement. Further, h− and rh− refinement studies
are explored.

The numerical examples considered is block under pressure to demonstrate the proposed adap-
tive strategies. The convergence study made for both h− and rh− refinement are shown in Fig.
2. The studies of adaptive refinement concluded the following points: (a) The point-wise error
estimation in Sobolev space indicates convergence of solution with increase in degrees of free-
dom. (b) The proposed method of h− refinement illustrates a higher rate of convergence. (c)
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Figure 1: Novel approach for h− refinement in IGA
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Figure 1: h− refinement in IGA

Spring load method seeks for the geometry of control mesh to follow the geometry of the solu-
tion field in order to reduce the error. (d ) The rh− refinement shows better rate of convergence
than only h− refinement.
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(c) Mesh 3 (d) Mesh 4
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Figure 1: h− refinement meshes for numerical example 1 and Error norm plot
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(a) Mesh 1 after r− adaption (b) Mesh 2 after r− adaption

(c) Mesh 3 after r− adaption (d) Mesh 4 after r− adaption
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(e) Mesh 5 after r− adaption (f) Error in h− and rh− adaption

Figure 1: and rh− refinement meshes for numerical example 1 and Error norm plot
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(a) Mesh 1 after r− adaption (b) Mesh 2 after r− adaption

(c) Mesh 3 after r− adaption (d) Mesh 4 after r− adaption
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Figure 1: and rh− refinement meshes for numerical example 1 and Error norm plot
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Figure 2: h− and rh− refinement meshes and error plot for block under pressure
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