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ABSTRACT

Reconstruction (or lifting) operators, mapping degrees of freedom (DoFs) to functions living in
a finite-dimensional space, play a salient role in the numerical approximation of partial differen-
tial equations (PDEs). In compatible or mimetic discretization schemes (see [10] and references
therein), DoFs are defined as the codomain of de Rham (or reduction) operators and are attached
to some geometric entities of an underlying three-dimensional mesh (e.g. vertices, edges, faces,
and cells) according to the physical nature of fields. In what follows, a space of DoFs is generi-
cally denoted by X and the reconstruction and de Rham operators associated with this space are
respectively denoted by LX and RX . Loosely speaking, LX provides an approximation of a right
inverse of RX . The reconstruction operator is said to be of low-order when the composition
LX · RX (yielding an interpolation operator) leaves cell-wise constant fields invariant.

Our main focus here is the generic design of reconstruction operators on polyhedral meshes in
order to build discrete Hodge operators (or Hodge inner products). The discrete Hodge operator
is the cornerstone of many compatible discretizations [1, 12, 10] and is related to reconstruction
operators through the following identity:

HXα (a1, a2) :=

∫
Ω

LX (a1) · α · LX (a2), ∀a1, a2 ∈ X ,

where Ω ⊂ R3 is the computational domain discretized by the polyhedral mesh and α is a
phenomenological parameter such as a conductivity. In the context of Finite Elements, Whitney
reconstruction functions provide a classical example of reconstruction operators on tetrahedral
meshes. On polyhedral meshes, generic design principles of reconstruction operators have been
proposed in [3, 4, 11]. These operators are built in each mesh cell so that suitable matching
conditions are satisfied at mesh interfaces to ensure the conformity of the reconstruction (in the
sense that the operator maps to the appropriate Sobolev space).

Relying on the Compatible Discrete Operator (CDO) framework [1], we adopt an alternative
viewpoint which unifies reconstruction operators devised in [5, 8, 9]. In this context, the recon-
struction operators typically map onto piecewise constant functions on a submesh (thereby dis-
carding local conformity), while their composition with the de Rham operator remains single-
valued. Another contribution is that we identify the design principles that reconstruction oper-
ators have to verify to ensure the convergence of the numerical scheme for elliptic problems.
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Specifically, we establish the equivalence between a one-level design strategy of the reconstruc-
tion operator as considered in [2, 5] and a two-level design strategy as considered in [3, 9, 6].
This second strategy, which decomposes the reconstruction operator into the sum of a consis-
tent part and a stabilization part, provides a systematic construction principle where the only
user-dependent design lies in the stabilization part, while the consistent part is fixed.

As an illustration, we present piecewise constant reconstruction operators in each mesh cell
for all types of DoFs. In the case of edge-based reconstruction operators, we study the impact
of the stabilization parameter in terms of accuracy and computational cost for the numerical
approximation of anisotropic diffusion problems on several polyhedral meshes. Under- and
over-penalized values of the stabilization parameter have a negative impact on the preservation
of bounds and on accuracy and costs. For the problem considered, appropriate choices are
values closed to those proposed in [5, 9]. These conclusions are to be confirmed by further
numerical tests.
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