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Daniele A. Di Pietro1, Jérôme Droniou2 and Alexandre Ern3

1 University of Montpellier, I3M, 34057 Montpellier CEDEX 5, France
2 School of Mathematical Sciences, Monash University, Victoria 3800, Australia

3 University Paris-Est, CERMICS (ENPC), 6–8 avenue Blaise Pascal, 77455 Marne-la-Vallée, France

Key words: Discontinuous-skeletal methods, general meshes, degenerate advection-diffusion-
reaction.

ABSTRACT

We present an approximation method for degenerate advection-diffusion-reaction equations
where the (generalized) degrees of freedom (DOFs) after static condensation are polynomi-
als of order k ě 0 at mesh faces. Since such faces constitute the mesh skeleton, and since
DOFs can be chosen independently at each face, we use the terminology discontinuous-skeletal
method. The proposed method has various assets: (i) Fairly general meshes, with polytopal and
nonmatching cells, are supported; (ii) Arbitrary polynomial orders, including the case k “ 0,
can be considered; (iii) The error analysis covers the full range of Péclet numbers; (iv) Compu-
tational costs remain moderate since skeletal DOFs lead to a compact stencil.

The problem is defined as follows. Let Ω Ă Rd, d ě 1, be an open bounded connected polytope
of boundary BΩ and unit outer normaln. The diffusion coefficient ν : Ω Ñ R` is assumed to be
piecewise constant on a partition PΩ :“ tΩiu1ďiďNΩ

of Ω into polytopes and such that ν ě ν ě 0
almost everywhere in Ω. More general diffusion coefficients can be treated following the ideas
of [4]. For the advective velocity β : Ω Ñ Rd, we assume that β P LippΩqd and, for the sake
of simplicity, that ∇¨β ” 0. For the reaction coefficient µ : Ω Ñ R, we assume and that µ is
bounded from below by a real number µ0 ą 0. We introduce the following sets (cf. Figure 1):

Γν,β :“ tx P BΩ | ν ą 0 or β¨n ă 0u , I˘ν,β :“ tx P Iν | ˘ pβ¨nIqpxq ą 0u,

where Iν is the diffusive/nondiffusive interface and nI is the unit normal to Iν pointing out
of the diffusive region. More precisely, Iν is the set of points in Ω located at an interface
between two distinct subdomains Ωi and Ωj of PΩ such that ν|Ωi

ą ν|Ωj
“ 0. We assume

that pβ¨nIqpxq ‰ 0 for a.e. x P Iν . For given source term f P L2pΩq and boundary datum
g P L2pΓν,βq, the problem reads

∇¨p´ν∇u` βuq ` µu “ f in ΩzIν ,
rr´ν∇u` βuss¨nI “ 0 on Iν ,

rruss “ 0 on I`ν,β,
u “ g on Γν,β,

where rr¨ss denotes the jump across Iν (the sign is irrelevant). Notice that the boundary condition
is enforced at portions of the boundary touching a diffusive region or a nondiffusive region pro-
vided the advective field flows into the domain. A weak formulation for this problem has been
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Figure 1: Configuration of a degenerate advection-diffusion-reaction problem (left) and exact solution (right). The
jump discontinuity across I´

ν,β is clearly visible.

analyzed in [1] (in the non-degenerate case ν ą 0, Γν,β “ BΩ and the usual weak formulation
in the space H1

0 pΩq holds).

The starting point for the present discontinuous-skeletal method is the Hybrid-High Order
(HHO) method designed in [3]. Its extension to advection-diffusion-reaction equations entails
several new ideas: (i) We devise a local reconstruction of the advective derivative from cell-
and face-based DOFs using an integration by parts formula; (ii) Stability for the advective con-
tribution is ensured by terms that penalize the difference between cell- and face-based DOFs at
faces, and which therefore do not preclude the possibility of performing static condensation and
do not enlarge the stencil; as in [2], the stability terms are formulated in a rather general form
so as to include various approaches used in the literature, e.g., upwind, locally θ-upwind, and
Scharfetter–Gummel schemes; (iii) Boundary conditions are enforced weakly so as to achieve
robustness in the full range of Péclet numbers. An additional novel feature of the present work is
that our analysis also includes the case of locally degenerate advection-diffusion-reaction equa-
tions, where the diffusion coefficient vanishes on a (strict) subset of the computational domain.
Such problems are particularly delicate from a numerical viewpoint since, as pointed out, the
numerical method has to capture the jumps of the exact solution at the diffusive/nondiffusive
interface.
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